添加部分常用API。 添加 newlife rpc 通讯。
JiuHuan 编写于 2024-08-16 10:56:23
microCLib
#include "SHA1.h"

uint swapInt32(uint value)
{
    return	((value & 0x000000FF) << 24) |
        ((value & 0x0000FF00) << 8) |
        ((value & 0x00FF0000) >> 8) |
        ((value & 0xFF000000) >> 24);
}

#define htobe32(x) swapInt32(x)
#define be32toh(x) swapInt32(x)

#define SHA1_KEY_IOPAD_SIZE (64)
#define SHA1_DIGEST_SIZE    (20)

/* Implementation that should never be optimized out by the compiler */
static void utils_sha1_zeroize(void* v, uint32_t n) {
    volatile unsigned char* p = (unsigned char*)v; while (n--) *p++ = 0;
}

/*
 * 32-bit integer manipulation macros (big endian)
 */
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i)                            \
{                                                       \
    (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
        | ( (uint32_t) (b)[(i) + 1] << 16 )             \
        | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
        | ( (uint32_t) (b)[(i) + 3]       );            \
}
#endif

#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i)                            \
{                                                       \
    (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
    (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
    (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
    (b)[(i) + 3] = (unsigned char) ( (n)       );       \
}
#endif

void utils_sha1_init(iot_sha1_context* ctx)
{
    memset(ctx, 0, sizeof(iot_sha1_context));
}

void utils_sha1_free(iot_sha1_context* ctx)
{
    if (ctx == NULL) {
        return;
    }

    utils_sha1_zeroize(ctx, sizeof(iot_sha1_context));
}

void utils_sha1_clone(iot_sha1_context* dst,
    const iot_sha1_context* src)
{
    *dst = *src;
}

/*
 * SHA-1 context setup
 */
void utils_sha1_starts(iot_sha1_context* ctx)
{
    ctx->total[0] = 0;
    ctx->total[1] = 0;

    ctx->state[0] = 0x67452301;
    ctx->state[1] = 0xEFCDAB89;
    ctx->state[2] = 0x98BADCFE;
    ctx->state[3] = 0x10325476;
    ctx->state[4] = 0xC3D2E1F0;
}

void utils_sha1_process(iot_sha1_context* ctx, const unsigned char data[64])
{
    uint32_t temp, W[16], A, B, C, D, E;

    GET_UINT32_BE(W[0], data, 0);
    GET_UINT32_BE(W[1], data, 4);
    GET_UINT32_BE(W[2], data, 8);
    GET_UINT32_BE(W[3], data, 12);
    GET_UINT32_BE(W[4], data, 16);
    GET_UINT32_BE(W[5], data, 20);
    GET_UINT32_BE(W[6], data, 24);
    GET_UINT32_BE(W[7], data, 28);
    GET_UINT32_BE(W[8], data, 32);
    GET_UINT32_BE(W[9], data, 36);
    GET_UINT32_BE(W[10], data, 40);
    GET_UINT32_BE(W[11], data, 44);
    GET_UINT32_BE(W[12], data, 48);
    GET_UINT32_BE(W[13], data, 52);
    GET_UINT32_BE(W[14], data, 56);
    GET_UINT32_BE(W[15], data, 60);

#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))

#define R(t)                                            \
(                                                       \
    temp = W[( t -  3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
           W[( t - 14 ) & 0x0F] ^ W[  t       & 0x0F],  \
    ( W[t & 0x0F] = S(temp,1) )                         \
)

#define P(a,b,c,d,e,x)                                  \
{                                                       \
    e += S(a,5) + F(b,c,d) + K + x; b = S(b,30);        \
}

    A = ctx->state[0];
    B = ctx->state[1];
    C = ctx->state[2];
    D = ctx->state[3];
    E = ctx->state[4];

#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999

    P(A, B, C, D, E, W[0]);
    P(E, A, B, C, D, W[1]);
    P(D, E, A, B, C, W[2]);
    P(C, D, E, A, B, W[3]);
    P(B, C, D, E, A, W[4]);
    P(A, B, C, D, E, W[5]);
    P(E, A, B, C, D, W[6]);
    P(D, E, A, B, C, W[7]);
    P(C, D, E, A, B, W[8]);
    P(B, C, D, E, A, W[9]);
    P(A, B, C, D, E, W[10]);
    P(E, A, B, C, D, W[11]);
    P(D, E, A, B, C, W[12]);
    P(C, D, E, A, B, W[13]);
    P(B, C, D, E, A, W[14]);
    P(A, B, C, D, E, W[15]);
    P(E, A, B, C, D, R(16));
    P(D, E, A, B, C, R(17));
    P(C, D, E, A, B, R(18));
    P(B, C, D, E, A, R(19));

#undef K
#undef F

#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1

    P(A, B, C, D, E, R(20));
    P(E, A, B, C, D, R(21));
    P(D, E, A, B, C, R(22));
    P(C, D, E, A, B, R(23));
    P(B, C, D, E, A, R(24));
    P(A, B, C, D, E, R(25));
    P(E, A, B, C, D, R(26));
    P(D, E, A, B, C, R(27));
    P(C, D, E, A, B, R(28));
    P(B, C, D, E, A, R(29));
    P(A, B, C, D, E, R(30));
    P(E, A, B, C, D, R(31));
    P(D, E, A, B, C, R(32));
    P(C, D, E, A, B, R(33));
    P(B, C, D, E, A, R(34));
    P(A, B, C, D, E, R(35));
    P(E, A, B, C, D, R(36));
    P(D, E, A, B, C, R(37));
    P(C, D, E, A, B, R(38));
    P(B, C, D, E, A, R(39));

#undef K
#undef F

#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC

    P(A, B, C, D, E, R(40));
    P(E, A, B, C, D, R(41));
    P(D, E, A, B, C, R(42));
    P(C, D, E, A, B, R(43));
    P(B, C, D, E, A, R(44));
    P(A, B, C, D, E, R(45));
    P(E, A, B, C, D, R(46));
    P(D, E, A, B, C, R(47));
    P(C, D, E, A, B, R(48));
    P(B, C, D, E, A, R(49));
    P(A, B, C, D, E, R(50));
    P(E, A, B, C, D, R(51));
    P(D, E, A, B, C, R(52));
    P(C, D, E, A, B, R(53));
    P(B, C, D, E, A, R(54));
    P(A, B, C, D, E, R(55));
    P(E, A, B, C, D, R(56));
    P(D, E, A, B, C, R(57));
    P(C, D, E, A, B, R(58));
    P(B, C, D, E, A, R(59));

#undef K
#undef F

#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6

    P(A, B, C, D, E, R(60));
    P(E, A, B, C, D, R(61));
    P(D, E, A, B, C, R(62));
    P(C, D, E, A, B, R(63));
    P(B, C, D, E, A, R(64));
    P(A, B, C, D, E, R(65));
    P(E, A, B, C, D, R(66));
    P(D, E, A, B, C, R(67));
    P(C, D, E, A, B, R(68));
    P(B, C, D, E, A, R(69));
    P(A, B, C, D, E, R(70));
    P(E, A, B, C, D, R(71));
    P(D, E, A, B, C, R(72));
    P(C, D, E, A, B, R(73));
    P(B, C, D, E, A, R(74));
    P(A, B, C, D, E, R(75));
    P(E, A, B, C, D, R(76));
    P(D, E, A, B, C, R(77));
    P(C, D, E, A, B, R(78));
    P(B, C, D, E, A, R(79));

#undef K
#undef F

    ctx->state[0] += A;
    ctx->state[1] += B;
    ctx->state[2] += C;
    ctx->state[3] += D;
    ctx->state[4] += E;
}

/*
 * SHA-1 process buffer
 */
void utils_sha1_update(iot_sha1_context* ctx, const unsigned char* input, uint32_t ilen)
{
    uint32_t fill;
    uint32_t left;

    if (ilen == 0)
        return;

    left = ctx->total[0] & 0x3F;
    fill = 64 - left;

    ctx->total[0] += (uint32_t)ilen;
    ctx->total[0] &= 0xFFFFFFFF;

    if (ctx->total[0] < (uint32_t)ilen)
        ctx->total[1]++;

    if (left && ilen >= fill)
    {
        memcpy((void*)(ctx->buffer + left), input, fill);
        utils_sha1_process(ctx, ctx->buffer);
        input += fill;
        ilen -= fill;
        left = 0;
    }

    while (ilen >= 64)
    {
        utils_sha1_process(ctx, input);
        input += 64;
        ilen -= 64;
    }

    if (ilen > 0)
        memcpy((void*)(ctx->buffer + left), input, ilen);
}

static const unsigned char sha1_padding[64] = {
 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/*
 * SHA-1 final digest
 */
void utils_sha1_finish(iot_sha1_context* ctx, unsigned char output[20])
{
    uint32_t last, padn;
    uint32_t high, low;
    unsigned char msglen[8];

    high = (ctx->total[0] >> 29)
        | (ctx->total[1] << 3);
    low = (ctx->total[0] << 3);

    PUT_UINT32_BE(high, msglen, 0);
    PUT_UINT32_BE(low, msglen, 4);

    last = ctx->total[0] & 0x3F;
    padn = (last < 56) ? (56 - last) : (120 - last);

    utils_sha1_update(ctx, sha1_padding, padn);
    utils_sha1_update(ctx, msglen, 8);

    PUT_UINT32_BE(ctx->state[0], output, 0);
    PUT_UINT32_BE(ctx->state[1], output, 4);
    PUT_UINT32_BE(ctx->state[2], output, 8);
    PUT_UINT32_BE(ctx->state[3], output, 12);
    PUT_UINT32_BE(ctx->state[4], output, 16);
}


/*
 * output = SHA-1( input buffer )
 */
void utils_sha1(const unsigned char* input, uint32_t ilen, unsigned char output[20])
{
    iot_sha1_context ctx;

    utils_sha1_init(&ctx);
    utils_sha1_starts(&ctx);
    utils_sha1_update(&ctx, input, ilen);
    utils_sha1_finish(&ctx, output);
    utils_sha1_free(&ctx);
}

static int8_t utils_hb2hex(uint8_t hb)
{
    hb = hb & 0xF;
    return (int8_t)(hb < 10 ? '0' + hb : hb - 10 + 'a');
}

void utils_hmac_sha1(const char* msg, int msg_len, char* digest, const char* key, int key_len)
{
    iot_sha1_context context;
    unsigned char k_ipad[SHA1_KEY_IOPAD_SIZE];    /* inner padding - key XORd with ipad  */
    unsigned char k_opad[SHA1_KEY_IOPAD_SIZE];    /* outer padding - key XORd with opad */
    unsigned char out[SHA1_DIGEST_SIZE];
    int i;

    if ((NULL == msg) || (NULL == digest) || (NULL == key)) {
        return;
    }

    if (key_len > SHA1_KEY_IOPAD_SIZE) {
        return;
    }

    /* start out by storing key in pads */
    memset(k_ipad, 0, sizeof(k_ipad));
    memset(k_opad, 0, sizeof(k_opad));
    memcpy(k_ipad, key, key_len);
    memcpy(k_opad, key, key_len);

    /* XOR key with ipad and opad values */
    for (i = 0; i < SHA1_KEY_IOPAD_SIZE; i++) {
        k_ipad[i] ^= 0x36;
        k_opad[i] ^= 0x5c;
    }

    /* perform inner SHA */
    utils_sha1_init(&context);                                      /* init context for 1st pass */
    utils_sha1_starts(&context);                                    /* setup context for 1st pass */
    utils_sha1_update(&context, k_ipad, SHA1_KEY_IOPAD_SIZE);            /* start with inner pad */
    utils_sha1_update(&context, (unsigned char*)msg, msg_len);    /* then text of datagram */
    utils_sha1_finish(&context, out);                               /* finish up 1st pass */

    /* perform outer SHA */
    utils_sha1_init(&context);                              /* init context for 2nd pass */
    utils_sha1_starts(&context);                            /* setup context for 2nd pass */
    utils_sha1_update(&context, k_opad, SHA1_KEY_IOPAD_SIZE);    /* start with outer pad */
    utils_sha1_update(&context, out, SHA1_DIGEST_SIZE);     /* then results of 1st hash */
    utils_sha1_finish(&context, out);                       /* finish up 2nd pass */

    for (i = 0; i < SHA1_DIGEST_SIZE; ++i) {
        digest[i * 2] = utils_hb2hex(out[i] >> 4);
        digest[i * 2 + 1] = utils_hb2hex(out[i]);
    }
}

void utils_hmac_sha1_hex(char* msg, int msg_len, byte* digest, char* key, int key_len)
{
    iot_sha1_context context;
    unsigned char k_ipad[SHA1_KEY_IOPAD_SIZE];    /* inner padding - key XORd with ipad  */
    unsigned char k_opad[SHA1_KEY_IOPAD_SIZE];    /* outer padding - key XORd with opad */
    unsigned char out[SHA1_DIGEST_SIZE];
    int i;

    if ((NULL == msg) || (NULL == digest) || (NULL == key)) {
        return;
    }

    if (key_len > SHA1_KEY_IOPAD_SIZE) {
        return;
    }

    /* start out by storing key in pads */
    memset(k_ipad, 0, sizeof(k_ipad));
    memset(k_opad, 0, sizeof(k_opad));
    memcpy(k_ipad, key, key_len);
    memcpy(k_opad, key, key_len);

    /* XOR key with ipad and opad values */
    for (i = 0; i < SHA1_KEY_IOPAD_SIZE; i++) {
        k_ipad[i] ^= 0x36;
        k_opad[i] ^= 0x5c;
    }

    /* perform inner SHA */
    utils_sha1_init(&context);                                      /* init context for 1st pass */
    utils_sha1_starts(&context);                                    /* setup context for 1st pass */
    utils_sha1_update(&context, k_ipad, SHA1_KEY_IOPAD_SIZE);            /* start with inner pad */
    utils_sha1_update(&context, (unsigned char*)msg, msg_len);    /* then text of datagram */
    utils_sha1_finish(&context, out);                               /* finish up 1st pass */

    /* perform outer SHA */
    utils_sha1_init(&context);                              /* init context for 2nd pass */
    utils_sha1_starts(&context);                            /* setup context for 2nd pass */
    utils_sha1_update(&context, k_opad, SHA1_KEY_IOPAD_SIZE);    /* start with outer pad */
    utils_sha1_update(&context, out, SHA1_DIGEST_SIZE);     /* then results of 1st hash */
    utils_sha1_finish(&context, out);                       /* finish up 2nd pass */
    memcpy(digest, out, SHA1_DIGEST_SIZE);
}